Collaborators: Cynthia Vazquez, Vagner Fonseca, Andrea Gomez de la Fuente, Sandra Gonzalez, Fatima Fleitas, Mauricio Lima, Natália R. Guimarães, Felipe C. M. Iani, Analia Rojas, Tania Alfonso, Cesar Cantero, Julio Barrios, Shirley Villalba, Maria Jose Ortega, Juan Torales, Maria Liz Gamarra, Carolina Aquino, Leticia Franco, Jairo Mendez Rico, Luiz Carlos Junior Alcantara, Marta Giovanetti
Summary: In recent months, Paraguay has been grappled with a notable monkeypox outbreak, straining its healthcare infrastructure. The sudden spike in cases underlines the imperative need for a comprehensive understanding of the virus’s dynamics, enabling the formulation of robust containment measures. To address this challenge, our team joined forces with the Central Public Health Laboratory of Asunción and the Pan-American Health Organization. Through this collaboration, we employed portable whole-genome sequencing combined with phylodynamic analysis to examine the MPXV strains circulating in Paraguay. Our genomic monitoring approach has produced the first 30 whole-genome sequences from Paraguay, all of which were identified under lineage IIb. Interestingly, our data suggest that the origin of the monkeypox virus in Paraguay at the beginning of 2022 can be traced back to Brazil. This introduction subsequently catalyzed further community spread that was further exacerbated by several independent introduction events as time progressed. These findings not only shed light on the transmission patterns of the virus but also highlight the pivotal role such insights play in sculpting effective response strategies and driving impactful public health measures. Furthermore, our findings strongly advocate intensified surveillance at international borders, ensuring swift detection and proactive countermeasures against potential outbreaks in the future.
Publication Date: 2024-01-04
Journal: Viruses
DOI: https://doi.org/10.3390/v16010083